

Table Of Contents

1 Executive Summary

2 Audit Methodology

3 Project Overview

3.1 Project Introduction

3.2 Vulnerability Information

4 Code Overview

4.1 Contracts Description

4.2 Visibility Description

4.3 Vulnerability Summary

5 Audit Result

6 Statement

1 Executive Summary

On 2025.03.10, the SlowMist security team received the Parasail team's security audit application for pFIL

incremental audit, developed the audit plan according to the agreement of both parties and the characteristics of the

project, and finally issued the security audit report.

The SlowMist security team adopts the strategy of "white box lead, black, grey box assists" to conduct a complete

security test on the project in the way closest to the real attack.

The test method information:

Test method Description

Black box testing Conduct security tests from an attacker's perspective externally.

Grey box testing
Conduct security testing on code modules through the scripting tool, observing the
internal running status, mining weaknesses.

White box
testing

Based on the open source code, non-open source code, to detect whether there are
vulnerabilities in programs such as nodes, SDK, etc.

The vulnerability severity level information:

Level Description

Critical
Critical severity vulnerabilities will have a significant impact on the security of the DeFi
project, and it is strongly recommended to fix the critical vulnerabilities.

High
High severity vulnerabilities will affect the normal operation of the DeFi project. It is
strongly recommended to fix high-risk vulnerabilities.

Medium
Medium severity vulnerability will affect the operation of the DeFi project. It is
recommended to fix medium-risk vulnerabilities.

Low
Low severity vulnerabilities may affect the operation of the DeFi project in certain
scenarios. It is suggested that the project team should evaluate and consider whether
these vulnerabilities need to be fixed.

Weakness There are safety risks theoretically, but it is extremely difficult to reproduce in engineering.

Suggestion There are better practices for coding or architecture.

2 Audit Methodology

The security audit process of SlowMist security team for smart contract includes two steps:

Following is the list of commonly known vulnerabilities that was considered during the audit of the smart contract:

Serial Number Audit Class Audit Subclass

1 Overflow Audit -

2 Reentrancy Attack Audit -

3 Replay Attack Audit -

4 Flashloan Attack Audit -

5 Race Conditions Audit Reordering Attack Audit

6 Permission Vulnerability Audit
Access Control Audit

Excessive Authority Audit

7 Security Design Audit

External Module Safe Use Audit

Compiler Version Security Audit

Hard-coded Address Security Audit

Fallback Function Safe Use Audit

Show Coding Security Audit

Function Return Value Security Audit

External Call Function Security Audit

Smart contract codes are scanned/tested for commonly known and more specific vulnerabilities using

automated analysis tools.

Manual audit of the codes for security issues. The contracts are manually analyzed to look for any potential

problems.

Serial Number Audit Class Audit Subclass

7 Security Design Audit
Block data Dependence Security Audit

tx.origin Authentication Security Audit

8 Denial of Service Audit -

9 Gas Optimization Audit -

10 Design Logic Audit -

11 Variable Coverage Vulnerability Audit -

12 "False Top-up" Vulnerability Audit -

13 Scoping and Declarations Audit -

14 Malicious Event Log Audit -

15 Arithmetic Accuracy Deviation Audit -

16 Uninitialized Storage Pointer Audit -

3 Project Overview

3.1 Project Introduction

Filecoin perpetual pledge swap (pFIL) smart contracts.

3.2 Vulnerability Information

The following is the status of the vulnerabilities found in this audit:

NO Title Category Level Status

N1
Unlimited triggering of
OnRequestCalculate

events
Design Logic Audit Medium Fixed

NO Title Category Level Status

N2
Inconsistent event

logging
Design Logic Audit Low Fixed

N3 Redundant code Others Suggestion Fixed

N4
Missing zero address

check
Others Suggestion Fixed

N5 Missing event records Others Suggestion Fixed

N6
Risk of excessive

authority
Authority Control
Vulnerability Audit

Medium Acknowledged

4 Code Overview

4.1 Contracts Description

https://github.com/parasail-network/pFIL-contracts

Initial audit version: a958f2508680610a765ab84cc274f4b616424260

Final audit version: 2662612d8fad492491b1731d4f0975c7320805a6

The main network address of the contract is as follows:

The code was not deployed to the mainnet.

4.2 Visibility Description

The SlowMist Security team analyzed the visibility of major contracts during the audit, the result as follows:

AgentImplContract

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

<Receive Ether> External Payable -

<Fallback> External Payable -

AgentImplContract

initialize External Can Modify State initializer

agentWithdrawFromMiner External Can Modify State -

getReservedBalance Public - -

calculateSafePledge External Can Modify State onlyOwner

updateControlAddress External Can Modify State onlyProtocol

reclaimOwnerAddress External Can Modify State onlyOwner

delegateOwnerAddress External Can Modify State onlyOwner

changeBeneficiary External Can Modify State onlyOwner

paybackFIL External Payable -

getNodeBalance External - -

getAvailableBalance Public - -

getOwnerAddress Public - -

isActive Public - -

_getOwnerReturn Internal - -

_getBeneficiary Internal - -

_getBeneficiaryRaw Internal - -

_changeOwnerAddressWrapper Internal Can Modify State -

_sendRequestSafePledge Internal Can Modify State -

getTotalMinted Public - -

_resetAgent Internal Can Modify State -

_getIDAddress Internal - -

_validateOriginOwner Internal - -

AgentImplContract

_validateAddress Internal - -

version External - -

Repl

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

initialize Public Can Modify State initializer

updateAgentImpl External Can Modify State onlyOwner

setPendingSwapTime External Can Modify State onlyOwner

setAddress External Can Modify State onlyOwner

setFee External Can Modify State onlyOwner

controlProtocol External Can Modify State onlyOwner

setInterestRateModel External Can Modify State onlyOwner

createAgent External Can Modify State whenNotPaused

borrowPFIL External Can Modify State nonReentrant whenNotPaused

borrowFIL External Can Modify State nonReentrant whenNotPaused

repayPFIL External Can Modify State nonReentrant whenNotPaused

repayFIL External Payable nonReentrant whenNotPaused

depositFIL External Payable nonReentrant whenNotPaused

withdrawFIL External Can Modify State nonReentrant whenNotPaused

debtOf Public - -

covertDebtSharesToDebt Public - -

convertDebtToDebtShares Public - -

Repl

addDebt Internal Can Modify State -

removeDebt Internal Can Modify State -

accureInterest Public Can Modify State -

requestCalculate External Can Modify State isAgentCall

receiveWithdraw External Payable isAgentCall

updateAgentSafePledge External Can Modify State onlySteward

updateAgentControlAddress External Can Modify State onlySteward

resetAgent External Can Modify State isAgentCall

onAgentDelegated External Can Modify State isAgentCall

onAgentWithdraw External Can Modify State isAgentCall

getPFILAddress External - -

getAgents External - -

getAgentsCount External - -

getAgent External - -

isAgent Public - -

_validateBorrowAddDebt Internal Can Modify State -

_securityCheck Internal - -

version External - -

_authorizeUpgrade Internal Can Modify State onlyOwner

getImplementation External - -

_checkValidMiner Internal - -

burnFromWhenPaused External Can Modify State onlyOwner

Repl

migrateToV3 Public Can Modify State reinitializer onlyOwner

migrateAgents Public Can Modify State onlyOwner

_migrateAgents Internal Can Modify State -

InterestRateModel

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

getBorrowRate External - -

4.3 Vulnerability Summary

[N1] [Medium] Unlimited triggering of OnRequestCalculate events

Category: Design Logic Audit

Content

In the AgentImplContract contract, once the owner authority of the miner is transferred to the agentID address, the

owner role of the contract can trigger the OnRequestCalculate event of the Repl contract indefinitely by

repeatedly calling the calculateSafePledge function, which may lead to an increase in events, interfere with the

normal operation of the monitoring service, and may affect the system that relies on this event for business

processing.

 function calculateSafePledge() external onlyOwner {

 _sendRequestSafePledge(true);

 }

Solution

It is recommended to add a call interval limit in the calculateSafePledge function to ensure that each agent can only

trigger a calculation request once within a reasonable time interval.

contracts/AgentImplementation.sol#L122-L124

Status

Fixed

[N2] [Low] Inconsistent event logging

Category: Design Logic Audit

Content

In the repayFIL function of the Repl contract, the actual amount repaid may be amount rather than msg.value ,

which may lead to off-chain analysis errors.

 function repayFIL(address agent) external payable nonReentrant whenNotPaused {

 // accureInterest();

 uint256 amount = debtOf(agent) > msg.value ? msg.value : debtOf(agent);

 removeDebt(amount, agent);

 if (msg.value > amount) {

 (bool success,) = msg.sender.call{value: msg.value - amount}("");

 if (!success) revert TransferFailed();

 }

 _securityCheck();

 emit Repay(agent, msg.value);

 }

Solution

It is recommended to replace the msg.value parameter of the Repay event with the amount parameter.

Status

Fixed

[N3] [Suggestion] Redundant code

Category: Others

Content

In the Repl contract, the onAgentWithdraw function can be called by AgentImplContract contract and trigger the

OnAgentWithdraw event, but the onAgentWithdraw function is not called in the AgentImplContract contract.

contracts/Repl.sol#L297-L308

 function onAgentWithdraw(uint64 _minerID, uint256 amount) external isAgentCall {

 emit OnAgentWithdraw(msg.sender, _minerID, amount);

 }

Solution

It is recommended to delete the redundant code.

Status

Fixed

[N4] [Suggestion] Missing zero address check

Category: Others

Content

In the Repl contract, the initialize function updateAgentImpl function, setInterestRateModel function,

borrowFIL function, and migrateToV3 function lack zero address checks for address type parameters.

 function initialize(address _pFIL, address _steward, address _feeTo) public

initializer {

 __ReentrancyGuard_init();

 __Ownable_init();

 __Pausable_init();

 __UUPSUpgradeable_init();

 if (_pFIL == address(0)) revert InvalidAddress();

 pFIL = IPFIL(_pFIL);

 steward = _steward;

 feeTo = _feeTo;

 pendingSwap = 24 hours;

 // fee = amount * days * feePerDay / 10000

 feePerDay = 50;

 // ratio = dividendTakeRate / 10000

 dividendTakeRate = 1000;

 }

 function updateAgentImpl(address _agentImpl) external onlyOwner {

 agentImplementation = _agentImpl;

 emit AgentImplUpdated(_agentImpl);

 }

contracts/Repl.sol#L473-L475

contracts/Repl.sol#L136-L150, L156-L159, L213-L215, L263-L279, L572-L590

 function setInterestRateModel(address _interestRateModel) external onlyOwner {

 interestRateModel = IInterestRateModel(_interestRateModel);

 }

 function borrowFIL(

 uint256 amount,

 address agent,

 address receiver

) external nonReentrant whenNotPaused {

 if (msg.sender != IAgentContract(agent).owner()) revert CallerNotAgentOwner();

 if (!IAgentContract(agent).isActive()) revert AgentNotActive();

 accureInterest();

 if (agentPledgeInfo[agent].lastSafePledgeUpdateTime + pendingSwap >

block.timestamp)

 revert PendingCalculate();

 _validateBorrowAddDebt(agent, amount);

 (bool success,) = receiver.call{value: amount}("");

 if (!success) revert TransferFailed();

 _securityCheck();

 emit Borrow(agent, amount);

 }

 function migrateToV3(

 address interestRateModel_,

 address agentImplementation_,

 uint256 conversionRate,

 address[] calldata activeAgents

) public reinitializer(3) onlyOwner {

 lastAccureInterestTime = block.timestamp;

 interestRateModel = IInterestRateModel(interestRateModel_);

 agentImplementation = agentImplementation_;

 // migrate agents data

 _migrateAgents(activeAgents, conversionRate);

 // rebase pFIL

 uint256 pFILTotalSupply = pFIL.totalSupply();

 uint256 pFILToSlash = pFILTotalSupply - (pFILTotalSupply * conversionRate) /

1e18;

 pFIL.burnFrom(address(this), pFILToSlash, 0);

 _securityCheck();

 }

Solution

It is recommended to add a zero address check.

Status

Fixed

[N5] [Suggestion] Missing event records

Category: Others

Content

In the Repl contract, the setInterestRateModel function modifies important contract variables but lacks event

records.

 function setInterestRateModel(address _interestRateModel) external onlyOwner {

 interestRateModel = IInterestRateModel(_interestRateModel);

 }

Solution

It is recommended to add event logging.

Status

Fixed

[N6] [Medium] Risk of excessive authority

Category: Authority Control Vulnerability Audit

Content

1.In the Repl contract, the Owner role can modify important variables in the contract through the following functions.

 function updateAgentImpl

 function setPendingSwapTime

 function setAddress

 function setFee

 function controlProtocol

 function setInterestRateModel

contracts/Repl.sol#L213-L215

contracts/Repl.sol#L156-L159, L165-L168, L175-L172, L189-L196, L202-L211, L213-L215, L557-L563,

L572-L590, L597-L599

 function burnFromWhenPaused

 function migrateToV3

2.In the Repl contract, the Steward role can modify the user's safePledge variable through the

updateAgentSafePledge function and modify the worker and control addresses of the miner node through

the updateAgentControlAddress function.

 function updateAgentSafePledge

 function updateAgentControlAddress

3.The Repl contract uses OpenZeppelin's UUPSUpgradeable upgrade mechanism, which allows the Owner role to

upgrade the smart contract.

 import {UUPSUpgradeable} from "@openzeppelin/contracts-

upgradeable/proxy/utils/UUPSUpgradeable.sol";

 function _authorizeUpgrade(address newImplementation) internal override onlyOwner

{}

Solution

In the short term, transferring owner ownership to multisig contracts is an effective solution to avoid single-point risk.

But in the long run, it is a more reasonable solution to implement a privilege separation strategy and set up multiple

privileged roles to manage each privileged function separately. And the authority involving user funds should be

managed by the community, and the EOA address can manage the authority involving emergency contract

suspension. This ensures both a quick response to threats and the safety of user funds.

Status

Acknowledged

5 Audit Result

contracts/Repl.sol#L438-L448

contracts/Repl.sol#L7, L536

Audit Number Audit Team Audit Date Audit Result

0X002503110001 SlowMist Security Team 2025.03.10 - 2025.03.11 Medium Risk

Summary conclusion: The SlowMist security team use a manual and SlowMist team's analysis tool to audit the

project, during the audit work we found 2 medium risk, 1 low risk, 3 suggestion.

6 Statement

SlowMist issues this report with reference to the facts that have occurred or existed before the issuance of this

report, and only assumes corresponding responsibility based on these.

For the facts that occurred or existed after the issuance, SlowMist is not able to judge the security status of this

project, and is not responsible for them. The security audit analysis and other contents of this report are based on the

documents and materials provided to SlowMist by the information provider till the date of the insurance report

(referred to as "provided information"). SlowMist assumes: The information provided is not missing, tampered with,

deleted or concealed. If the information provided is missing, tampered with, deleted, concealed, or inconsistent with

the actual situation, the SlowMist shall not be liable for any loss or adverse effect resulting therefrom. SlowMist only

conducts the agreed security audit on the security situation of the project and issues this report. SlowMist is not

responsible for the background and other conditions of the project.

