

Table Of Contents

1 Executive Summary

2 Audit Methodology

3 Project Overview

3.1 Project Introduction

3.2 Vulnerability Information

4 Code Overview

4.1 Contracts Description

4.2 Visibility Description

4.3 Vulnerability Summary

5 Audit Result

6 Statement

1 Executive Summary

On 2024.02.19, the SlowMist security team received the team's security audit application for pFIL-incremental-audit,

developed the audit plan according to the agreement of both parties and the characteristics of the project, and finally

issued the security audit report.

The SlowMist security team adopts the strategy of "white box lead, black, grey box assists" to conduct a complete

security test on the project in the way closest to the real attack.

The test method information:

Test method Description

Black box testing Conduct security tests from an attacker's perspective externally.

Grey box testing
Conduct security testing on code modules through the scripting tool, observing the
internal running status, mining weaknesses.

White box
testing

Based on the open source code, non-open source code, to detect whether there are
vulnerabilities in programs such as nodes, SDK, etc.

The vulnerability severity level information:

Level Description

Critical
Critical severity vulnerabilities will have a significant impact on the security of the DeFi
project, and it is strongly recommended to fix the critical vulnerabilities.

High
High severity vulnerabilities will affect the normal operation of the DeFi project. It is
strongly recommended to fix high-risk vulnerabilities.

Medium
Medium severity vulnerability will affect the operation of the DeFi project. It is
recommended to fix medium-risk vulnerabilities.

Low
Low severity vulnerabilities may affect the operation of the DeFi project in certain
scenarios. It is suggested that the project team should evaluate and consider whether
these vulnerabilities need to be fixed.

Weakness There are safety risks theoretically, but it is extremely difficult to reproduce in engineering.

Suggestion There are better practices for coding or architecture.

2 Audit Methodology

The security audit process of SlowMist security team for smart contract includes two steps:

Following is the list of commonly known vulnerabilities that was considered during the audit of the smart contract:

Serial Number Audit Class Audit Subclass

1 Overflow Audit -

2 Reentrancy Attack Audit -

3 Replay Attack Audit -

4 Flashloan Attack Audit -

5 Race Conditions Audit Reordering Attack Audit

6 Permission Vulnerability Audit
Access Control Audit

Excessive Authority Audit

7 Security Design Audit

External Module Safe Use Audit

Compiler Version Security Audit

Hard-coded Address Security Audit

Fallback Function Safe Use Audit

Show Coding Security Audit

Function Return Value Security Audit

External Call Function Security Audit

Smart contract codes are scanned/tested for commonly known and more specific vulnerabilities using

automated analysis tools.

Manual audit of the codes for security issues. The contracts are manually analyzed to look for any potential

problems.

Serial Number Audit Class Audit Subclass

7 Security Design Audit
Block data Dependence Security Audit

tx.origin Authentication Security Audit

8 Denial of Service Audit -

9 Gas Optimization Audit -

10 Design Logic Audit -

11 Variable Coverage Vulnerability Audit -

12 "False Top-up" Vulnerability Audit -

13 Scoping and Declarations Audit -

14 Malicious Event Log Audit -

15 Arithmetic Accuracy Deviation Audit -

16 Uninitialized Storage Pointer Audit -

3 Project Overview

3.1 Project Introduction

Filecoin Perpetual Pledge Swap (pFIL) Smart Contracts.

3.2 Vulnerability Information

The following is the status of the vulnerabilities found in this audit:

NO Title Category Level Status

N1
Invalid condition

check
Design Logic Audit Low Fixed

N2 Redundant code Others Suggestion Acknowledged

NO Title Category Level Status

N3
Mint error of
retainedPFIL

Design Logic Audit Medium Fixed

N4
Bypass passive

minting pFIL
Design Logic Audit High Fixed

N5

Function
reclaimOwnerAddress

cannot be used
normally

Design Logic Audit High Fixed

N6
Preemptive
initialization

Design Logic Audit Suggestion Acknowledged

N7
Risk of excessive

authority
Authority Control
Vulnerability Audit

Medium Acknowledged

N8 Missing event record Others Suggestion Acknowledged

4 Code Overview

4.1 Contracts Description

https://github.com/Project-pFIL/pFIL-contracts

Initial audit commit:39df36c02cedbef29c0818cc92b76d1f7fcca961

(Focus on code changes from version: fcec236f84fc2016cbbe3702202e2c9853ef7852 to version:

39df36c02cedbef29c0818cc92b76d1f7fcca961)

Final audit commit:8f0b5ecb58315132df11d62422c45c8ab05b88a8

The main network address of the contract is as follows:

The code was not deployed to the mainnet.

4.2 Visibility Description

The SlowMist Security team analyzed the visibility of major contracts during the audit, the result as follows:

AgentImplContract

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

<Receive Ether> External Payable -

<Fallback> External Payable -

initialize External Can Modify State initializer

pledgeSwap External Can Modify State onlyOwner nonReentrant

agentWithdrawFromMiner External Can Modify State -

getReservedBalance Public - -

calculateSafePledge External Can Modify State onlyOwner

updateSafePledge External Can Modify State onlyProtocol

updateControlAddress External Can Modify State onlyProtocol

reclaimOwnerAddress External Can Modify State onlyOwner

delegateOwnerAddress External Can Modify State onlyOwner

changeBeneficiary External Can Modify State onlyOwner

onAuctionEnd External Can Modify State onlyProtocol

paybackPFIL External Can Modify State needClearing

paybackFIL External Payable -

withdrawFIL External Can Modify State onlyOwner nonReentrant

passiveMint Public Can Modify State nonReentrant

getAvailableBalance Public - -

getOwnerAddress Public - -

_getOwnerReturn Internal - -

AgentImplContract

_getBeneficiary Internal - -

_getBeneficiaryRaw Internal - -

_changeOwnerAddressWrapper Internal Can Modify State -

_sendRequestSafePledge Internal Can Modify State -

getOutstandingTargetPledge Public - -

getTotalMinted Public - -

getMultiplier Internal - -

_resetAgent Internal Can Modify State -

_getIDAddress Internal - -

_validateOriginOwner Internal - -

_validateAddress Internal - -

version External - -

PFIL

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State ERC20 ERC20Permit

addMinter External Can Modify State onlyOwner

pause Public Can Modify State onlyMinter

unpause Public Can Modify State onlyMinter

totalSupply Public - -

balanceOf Public - -

transfer Public Can Modify State -

allowance Public - -

PFIL

approve Public Can Modify State -

transferFrom Public Can Modify State -

mint External Can Modify State onlyMinter

burnFrom Public Can Modify State onlyMinter

increaseAllowance Public Can Modify State -

decreaseAllowance Public Can Modify State -

getTotalShares External - -

sharesOf External - -

getSharesByFIL Public - -

getFILByShares Public - -

transferShares External Can Modify State -

transferSharesFrom External Can Modify State -

_totalPooledPledge Internal - -

_transfer Internal Can Modify State -

_approve Internal Can Modify State -

_spendAllowance Internal Can Modify State -

_getTotalShares Internal - -

_sharesOf Internal - -

_transferShares Internal Can Modify State whenNotPaused

_mintShares Internal Can Modify State -

_burnShares Internal Can Modify State -

_emitTransferEvents Internal Can Modify State -

PFIL

_emitTransferAfterMintingShares Internal Can Modify State -

ReplOracle

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

initialize Public Can Modify State initializer

getAggregatedPrice External - -

appendV3Pair Public Can Modify State onlyOwner

calculateV3Price Public - -

_authorizeUpgrade Internal Can Modify State onlyOwner

getImplementation External - -

version External - -

Repl

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

initialize Public Can Modify State initializer

updateAgentImpl External Can Modify State onlyOwner

setPendingSwapTime External Can Modify State onlyOwner

setAddress External Can Modify State onlyOwner

setFee External Can Modify State onlyOwner

setAuction External Can Modify State onlyOwner

controlProtocol External Can Modify State onlyOwner

Repl

createAgent External Can Modify State -

replContractMintPFIL External Can Modify State isAgentCall nonReentrant

requestCalculate External Can Modify State isAgentCall

receiveWithdraw External Payable isAgentCall

updateAgentSafePledge External Can Modify State onlySteward

updateAgentControlAddress External Can Modify State onlySteward

auctionBidded External Can Modify State isAuctionCall nonReentrant

onAgentDelegated External Can Modify State isAgentCall

onAgentWithdraw External Can Modify State isAgentCall

getRewardPerSecond External - -

passiveMintPFIL External Can Modify State isAgentCall

onPaybackPFIL External Can Modify State isAgentCall

getPFILAddress External - -

getAgents External - -

getAgent External - -

isAgent Public - -

_securityCheck Internal - -

_calculateAgentFee Internal - -

v2Init External Can Modify State -

version External - -

_authorizeUpgrade Internal Can Modify State onlyOwner

getImplementation External - -

Repl

_checkValidMiner Internal - -

burnFromWhenPaused External Can Modify State onlyOwner

ReplAuction

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

initialize Public Can Modify State initializer

setProtocol External Can Modify State onlyOwner

setDuration External Can Modify State onlyOwner

setStartPrice External Can Modify State onlyOwner

setPriceStep External Can Modify State onlyOwner

controlAuction External Can Modify State onlyOwner

receiveFIL External Can Modify State onlyProtocol

buy External Can Modify State nonReentrant

getPriceByAgent Public - -

getRemainingFILForAuction External - -

auctionIsExpired External - -

_startAuction Internal Can Modify State -

version External - -

_authorizeUpgrade Internal Can Modify State onlyOwner

getImplementation External - -

wPFIL

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State ERC20Permit ERC20

wrap External Can Modify State -

unwrap External Can Modify State -

getWPFILByPFIL External - -

getPFILByWPFIL External - -

PFILPerToken External - -

tokensPerPFIL External - -

4.3 Vulnerability Summary

[N1] [Low] Invalid condition check

Category: Design Logic Audit

Content

In the getMultiplier function of the AgentImplContract contract, the situation of lastPassiveMintingTime =

0 doesn‘t exist. If lastPassiveMintingTime =0, lastPassiveMintingTime will be set to block.timestamp in the

passiveMint function.

 function getMultiplier() internal view returns (uint256) {

 // 0.2/180/24/3600 = 12860082304 base 1e18

 uint256 multiperPer = 12860082304;

 uint cur = 1.2e18 - ((block.timestamp - delegateTime) % 31104000) *

multiperPer;

 uint pre;

 if (lastPassiveMintingTime == 0) {

 pre = 1.2e18;

 } else {

 pre = 1.2e18 - ((lastPassiveMintingTime - delegateTime) % 31104000) *

multiperPer;

 }

AgentImplementation.sol#L390-L401

 return (cur + pre) / 2;

 }

Solution

It is recommended to delete the code in the getMultiplier function that determines whether lastPassiveMintingTime is

0.

Status

Fixed

[N2] [Suggestion] Redundant code

Category: Others

Content

The lastPledgeSwapTime parameter in struct AgentLocalVars is not used.

uint256 lastPledgeSwapTime;

Solution

It is recommended to remove redundant code.

Status

Acknowledged; The project team stated that this parameter is to prevent the impact of old data when the contract is

upgraded.

[N3] [Medium] Mint error of retainedPFIL

Category: Design Logic Audit

Content

In the auctionBidded function of the Repl contract, retainedPFIL was incorrectly minted to msg.sender and

should be minted to the _agent address.

 function auctionBidded(

 uint256 _FILamount,

Repl.sol#L61

Repl.sol#L335-L361

 uint256 _pFILAmount,

 address _agent,

 address _winner

) external isAuctionCall nonReentrant {

 if (!(_FILamount > 0 && _pFILAmount > 0 && _pFILAmount >= _FILamount))

 revert InvalidValue();

 _securityCheck();

 uint _debt = IAgentContract(_agent).getOutstandingTargetPledge();

 uint retainedPFIL;

 if (_pFILAmount > _debt) {

 retainedPFIL = _pFILAmount - _debt;

 }

 pFIL.burnFrom(_winner, _pFILAmount, _pFILAmount); // burn all pFIL buy back

 if (retainedPFIL > 0) {

 pFIL.mint(msg.sender, retainedPFIL);

 }

 totalFILAuctioned += _FILamount;

 totalBurnedAmount += _pFILAmount - retainedPFIL;

 // Transfer FIL to winner

 (bool success,) = payable(_winner).call{value: _FILamount}("");

 if (!success) revert WinnerTransferFailed();

 //update recoveredPledgge

 IAgentContract(_agent).onAuctionEnd(_pFILAmount -retainedPFIL);

 emit OnAuctionBidded(_winner, _FILamount, _pFILAmount, _agent);

 }

Solution

It is recommended to change msg.sender in pFIL.mint(msg.sender, retainedPFIL); to _agent.

Status

Fixed

[N4] [High] Bypass passive minting pFIL

Category: Design Logic Audit

Content

In the AgentImplContract contract, after the user pledges using the pledgeSwap function, as long as the user does

not use the agentWithdrawFromMiner function and passiveMint function during the pledge period, and then

repays the debt through the paybackPFIL function and paybackFIL function, and then triggers the

passiveMint function, mint passive pFIL is not required, and can Successfully changed the ownership of Miner

Actor back to itself.

[N5] [High] Function reclaimOwnerAddress cannot be used normally

Category: Design Logic Audit

Content

In the AgentImplContract contract, there are two situations that prevent users from using the reclaimOwnerAddress

function to change ownership of Miner Actor back to itself.

contracts/AgentImplementation.sol

Solution

It is recommended to modify the way of triggering the passiveMint function to prevent users from

bypassing it.

Status

Fixed

When the user uses the passiveMint function to initialize the delegateTime parameter and

lastPassiveMintingTime parameter, if the user does not pledge, it will cause

getOutstandingTargetPledge() == 0 and lastPassiveMintingTime cannot be updated. This

makes it impossible for users to change ownership of Miner Actor back to itself without staking.

1.

When the user's TotalMinted amount is greater than safePledge and cannot be pledged anymore,

and block.timestamp - lastPassiveMintingTime > 1 days, the user first uses the paybackPFIL

function or paybackFIL function to repay the debt, because at this time

getOutstandingTargetPledge() == 0, resulting in the inability to Use the passiveMint function to

update the lastPassiveMintingTime parameter. As a result, users can no longer pledge to update

lastPassiveMintingTime , and cannot change ownership of Miner Actor back to itself.

2.

AgentImplementation.sol

Solution

It is recommended to add in the passiveMint function to update lastPassiveMintingTime when

getOutstandingTargetPledge() == 0.

Status

Fixed

[N6] [Suggestion] Preemptive initialization

Category: Design Logic Audit

Content

In the Repl contract, the v2Init function can be called by any user, which may cause an incorrect

replOracleAddress to be passed in.

 function v2Init(address replOracleAddress) external {

 require(totalBurnedAmount == 0 || address(replOracle) == address(0),

"Inited");

 totalBurnedAmount = totalPledgeSwapAmount - pFIL.totalSupply();

 replOracle = IReplOracle(replOracleAddress);

 }

Solution

It is recommended to add the onlyOwner modifier.

Status

Acknowledged

[N7] [Medium] Risk of excessive authority

Category: Authority Control Vulnerability Audit

Content

In the PFIL contract, the Owner role can add the minter role. The minter role can mint pFIL tokens at will without an

upper limit, and the malicious minter role can participate in the auction and bid to purchase FIL.The minter role can

burn the user's pFIL and shares at will, affecting the balance of pFIL holders.

addMinter

mint

burnFrom

Repl.sol#L463-L467

PFIL.sol

In the Repl contract and the ReplAuction contract, the Owner role can modify the key variables of the contract and

upgrade the contract.It is important to note that the Steward role can modify the controller address of the Miner actor

through the updateAgentControlAddress() function, affecting the node's operation and maintenance

permissions. And the Steward role can set the value of the parameter safePledge , which affects the number of

user mint pFILs.

updateAgentImpl

updateAgentSafePledge

setPendingSwapTime

setAddress

setFee

setAuction

controlProtocol

updateAgentControlAddress

_authorizeUpgrade

burnFromWhenPaused

Solution

In the short term, transferring owner ownership to multisig contracts is an effective solution to avoid single-point risk.

But in the long run, it is a more reasonable solution to implement a privilege separation strategy and set up multiple

privileged roles to manage each privileged function separately. And the authority involving user funds should be

managed by the community, and the authority involving emergency contract suspension can be managed by the

EOA address. This ensures both a quick response to threats and the safety of user funds.

Status

Acknowledged

[N8] [Suggestion] Missing event record

Category: Others

Content

Missing events for state changes in the contract.

Repl.sol

ReplAuction.sol

setProtocol

setAuction

mint

burnFrom

Solution

Recording events.

Status

Acknowledged

5 Audit Result

Audit Number Audit Team Audit Date Audit Result

0X002402200002 SlowMist Security Team 2024.02.19 - 2024.02.20 Medium Risk

Summary conclusion: The SlowMist security team use a manual and SlowMist team's analysis tool to audit the

project, during the audit work we found 2 high risk, 2 medium risk, 1 low risk, 3 suggestion vulnerabilities.

Repl.sol

PFIL.sol

6 Statement

SlowMist issues this report with reference to the facts that have occurred or existed before the issuance of this

report, and only assumes corresponding responsibility based on these.

For the facts that occurred or existed after the issuance, SlowMist is not able to judge the security status of this

project, and is not responsible for them. The security audit analysis and other contents of this report are based on the

documents and materials provided to SlowMist by the information provider till the date of the insurance report

(referred to as "provided information"). SlowMist assumes: The information provided is not missing, tampered with,

deleted or concealed. If the information provided is missing, tampered with, deleted, concealed, or inconsistent with

the actual situation, the SlowMist shall not be liable for any loss or adverse effect resulting therefrom. SlowMist only

conducts the agreed security audit on the security situation of the project and issues this report. SlowMist is not

responsible for the background and other conditions of the project.

