

Table Of Contents

1 Executive Summary

2 Audit Methodology

3 Project Overview

3.1 Project Introduction

3.2 Vulnerability Information

4 Code Overview

4.1 Contracts Description

4.2 Visibility Description

4.3 Vulnerability Summary

5 Audit Result

6 Statement

1 Executive Summary

On 2023.11.16, the SlowMist security team received the team's security audit application for pFIL, developed the

audit plan according to the agreement of both parties and the characteristics of the project, and finally issued the

security audit report.

The SlowMist security team adopts the strategy of "white box lead, black, grey box assists" to conduct a complete

security test on the project in the way closest to the real attack.

The test method information:

Test method Description

Black box testing Conduct security tests from an attacker's perspective externally.

Grey box testing
Conduct security testing on code modules through the scripting tool, observing the
internal running status, mining weaknesses.

White box
testing

Based on the open source code, non-open source code, to detect whether there are
vulnerabilities in programs such as nodes, SDK, etc.

The vulnerability severity level information:

Level Description

Critical
Critical severity vulnerabilities will have a significant impact on the security of the DeFi
project, and it is strongly recommended to fix the critical vulnerabilities.

High
High severity vulnerabilities will affect the normal operation of the DeFi project. It is
strongly recommended to fix high-risk vulnerabilities.

Medium
Medium severity vulnerability will affect the operation of the DeFi project. It is
recommended to fix medium-risk vulnerabilities.

Low
Low severity vulnerabilities may affect the operation of the DeFi project in certain
scenarios. It is suggested that the project team should evaluate and consider whether
these vulnerabilities need to be fixed.

Weakness There are safety risks theoretically, but it is extremely difficult to reproduce in engineering.

Suggestion There are better practices for coding or architecture.

2 Audit Methodology

The security audit process of SlowMist security team for smart contract includes two steps:

Following is the list of commonly known vulnerabilities that was considered during the audit of the smart contract:

Serial Number Audit Class Audit Subclass

1 Overflow Audit -

2 Reentrancy Attack Audit -

3 Replay Attack Audit -

4 Flashloan Attack Audit -

5 Race Conditions Audit Reordering Attack Audit

6 Permission Vulnerability Audit
Access Control Audit

Excessive Authority Audit

7 Security Design Audit

External Module Safe Use Audit

Compiler Version Security Audit

Hard-coded Address Security Audit

Fallback Function Safe Use Audit

Show Coding Security Audit

Function Return Value Security Audit

External Call Function Security Audit

Smart contract codes are scanned/tested for commonly known and more specific vulnerabilities using

automated analysis tools.

Manual audit of the codes for security issues. The contracts are manually analyzed to look for any potential

problems.

Serial Number Audit Class Audit Subclass

7 Security Design Audit
Block data Dependence Security Audit

tx.origin Authentication Security Audit

8 Denial of Service Audit -

9 Gas Optimization Audit -

10 Design Logic Audit -

11 Variable Coverage Vulnerability Audit -

12 "False Top-up" Vulnerability Audit -

13 Scoping and Declarations Audit -

14 Malicious Event Log Audit -

15 Arithmetic Accuracy Deviation Audit -

16 Uninitialized Storage Pointer Audit -

3 Project Overview

3.1 Project Introduction

An protocol designed to stake the Miner actor's owner address and mint pFIL for the staker.

Fund flow diagram：

3.2 Vulnerability Information

The following is the status of the vulnerabilities found in this audit:

NO Title Category Level Status

N1
lastPledgeSwapTime

value not checked
Design Logic Audit Suggestion Fixed

N2
Risk of excessive

authority
Authority Control
Vulnerability Audit

Medium Acknowledged

N3 Variable naming error Others Low Fixed

N4
Return value
unchecked

Others Suggestion Fixed

N5 Avoid using transfer() Others Suggestion Fixed

N6 Missing event record Others Suggestion Fixed

N7 Redundant code Others Suggestion Fixed

4 Code Overview

4.1 Contracts Description

https://github.com/Project-pFIL/pFIL-contracts

Initial audit commit: fdfb84c62978e9b4d11fce04479817b2d75601fd

Final audit commit: fcec236f84fc2016cbbe3702202e2c9853ef7852

The main network address of the contract is as follows:

The code was not deployed to the mainnet.

4.2 Visibility Description

The SlowMist Security team analyzed the visibility of major contracts during the audit, the result as follows:

AgentImplContract

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

<Receive Ether> External Payable -

<Fallback> External Payable -

initialize External Can Modify State initializer

pledgeSwap External Can Modify State onlyOwner nonReentrant

agentWithdrawFromMiner External Can Modify State -

calculateSafePledge Public Can Modify State onlyOwner

updateSafePledge External Can Modify State onlyProtocol

updateControlAddress External Can Modify State onlyProtocol

reclaimOwnerAddress External Can Modify State onlyOwner

delegateOwnerAddress External Can Modify State onlyOwner

getAvailableBalance Public - -

getOwnerAddress Public - -

AgentImplContract

_getOwnerReturn Internal - -

_getBeneficiary Internal - -

_changeOwnerAddressWrapper Internal Can Modify State -

getOutstandingTargetPledge Public - -

_resetAgent Internal Can Modify State -

_getIDAddress Internal - -

_validateOriginOwner Internal - -

_validateIsSameAddress Internal - -

PFIL

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State ERC20 ERC20Permit

addMinter External Can Modify State onlyOwner

pause Public Can Modify State onlyMinter

unpause Public Can Modify State onlyMinter

totalSupply Public - -

balanceOf Public - -

transfer Public Can Modify State -

allowance Public - -

approve Public Can Modify State -

transferFrom Public Can Modify State -

mint External Can Modify State onlyMinter

burnFrom Public Can Modify State onlyMinter

PFIL

increaseAllowance Public Can Modify State -

decreaseAllowance Public Can Modify State -

getTotalShares External - -

sharesOf External - -

getSharesByFIL Public - -

getFILByShares Public - -

transferShares External Can Modify State -

transferSharesFrom External Can Modify State -

_totalPooledPledge Internal - -

_transfer Internal Can Modify State -

_approve Internal Can Modify State -

_spendAllowance Internal Can Modify State -

_getTotalShares Internal - -

_sharesOf Internal - -

_transferShares Internal Can Modify State whenNotPaused

_mintShares Internal Can Modify State -

_burnShares Internal Can Modify State -

_emitTransferEvents Internal Can Modify State -

_emitTransferAfterMintingShares Internal Can Modify State -

Repl

Function Name Visibility Mutability Modifiers

initialize Public Can Modify State initializer

Repl

updateAgentImpl External Can Modify State onlyOwner

setPendingSwapTime External Can Modify State onlyOwner

setAddress External Can Modify State onlyOwner

setFee External Can Modify State onlyOwner

setAuction External Can Modify State onlyOwner

controlProtocol External Can Modify State onlyOwner

createAgent External Can Modify State -

replContractMintPFIL External Can Modify State isAgentCall nonReentrant

requestCalculate External Can Modify State isAgentCall

receiveWithdraw External Payable isAgentCall

updateAgentSafePledge External Can Modify State onlySteward

updateAgentControlAddress External Can Modify State onlySteward

auctionBidded External Can Modify State isAuctionCall nonReentrant

getAgents External - -

getAgent External - -

isAgent Public - -

_securityCheck Internal - -

_calculateAgentFee Internal - -

version External - -

_authorizeUpgrade Internal Can Modify State onlyOwner

getImplementation External - -

_checkValidMiner Internal - -

Repl

burnFromWhenPaused External Can Modify State onlyOwner

AgentProxy

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

_beforeFallback Internal Can Modify State -

_implementation Internal - -

getAgentImplemention Public - -

ReplAuction

Function Name Visibility Mutability Modifiers

initialize Public Can Modify State initializer

setProtocol External Can Modify State onlyOwner

setDuration External Can Modify State onlyOwner

setStartPrice External Can Modify State onlyOwner

controlAuction External Can Modify State onlyOwner

receiveFIL External Can Modify State onlyProtocol

buy External Can Modify State nonReentrant

getPrice Public - -

getRemainingFILForAuction Public - -

auctionIsExpired Public - -

_startAuction Internal Can Modify State -

version External - -

ReplAuction

_authorizeUpgrade Internal Can Modify State onlyOwner

getImplementation External - -

wPFIL

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State ERC20Permit ERC20

wrap External Can Modify State -

unwrap External Can Modify State -

getWFILByPFIL External - -

getPFILByWPFIL External - -

PFILPerToken External - -

tokensPerPFIL External - -

4.3 Vulnerability Summary

[N1] [Suggestion] lastPledgeSwapTime value not checked

Category: Design Logic Audit

Content

In the _calculateAgentFee function of the Repl contract, when calculating fees for the first pledge, the value of the

agentVars[_agent].lastPledgeSwapTime parameter is 0, making the value of the _during parameter equal

to block.timestamp, which is too large.

 function _calculateAgentFee(

 address _agent,

 uint256 _baseAmount

) internal view returns (uint256 _fee) {

 uint256 _during = block.timestamp - agentVars[_agent].lastPledgeSwapTime;

 // basement = 1000000

 _fee = (_during * _baseAmount * feePerDay) / (1000000 * 24 * 3600);

 }

Solution

It is recommended to check whether the agentVars[_agent].lastPledgeSwapTime parameter is 0. If so, the value of

the _during parameter is return 0.

Status

Fixed

[N2] [Medium] Risk of excessive authority

Category: Authority Control Vulnerability Audit

Content

Protocol roles can update control addresses through the updateControlAddress function.

 function updateControlAddress(

 uint64 _worker,

 uint64[] calldata _controlAddresses

) external onlyProtocol {

 CommonTypes.FilAddress[] memory controllers = new CommonTypes.FilAddress[](

 _controlAddresses.length

);

 for (uint64 i = 0; i < _controlAddresses.length; i++) {

 controllers[i] = FilAddresses.fromActorID(_controlAddresses[i]);

 }

 MinerAPI.changeWorkerAddress(

 CommonTypes.FilActorId.wrap(actorID),

 MinerTypes.ChangeWorkerAddressParams(FilAddresses.fromActorID(_worker),

controllers)

);

 }

In the PFIL contract, the Owner role can add the minter role. The minter role can mint pFIL tokens at will without an

upper limit, and the malicious minter role can participate in the auction and bid to purchase FIL.The minter role can

burn the user's pFIL and shares at will, affecting the balance of pFIL holders.The minter role can lock the contract,

making it impossible to transfer pFIL.

contracts/AgentImplementation.sol#L158-L172

addMinter

mint

burnFrom

pause

unpause

In the Repl contract and the ReplAuction contract, the Owner role can modify the key variables of the contract and

upgrade the contract.It is important to note that the Steward role can modify the controller address of the Miner actor

through the updateAgentControlAddress() function, affecting the node's operation and maintenance

permissions. And the Steward role can set the value of the parameter safePledge, which affects the number of user

mint pFILs.

updateAgentImpl

setPendingSwapTime

setAddress

setFee

setAuction

controlProtocol

updateAgentControlAddress

_authorizeUpgrade

burnFromWhenPaused

setProtocol

setDuration

setStartPrice

_authorizeUpgrade

Solution

In the short term, transferring owner ownership to multisig contracts is an effective solution to avoid single-point risk.

But in the long run, it is a more reasonable solution to implement a privilege separation strategy and set up multiple

privileged roles to manage each privileged function separately. And the authority involving user funds should be

managed by the community, and the authority involving emergency contract suspension can be managed by the

contracts/PFIL.sol

contracts/Repl.sol

contracts/ReplAuction.sol

EOA address. This ensures both a quick response to threats and the safety of user funds.

Status

Acknowledged

[N3] [Low] Variable naming error

Category: Others

Content

In the struct AuctionInfo of the ReplAuction contract, the pFILBoughtBack parameter records the number of

FIL sold in the specified round of auction, not the number of pFIL.

contracts/ReplAuction.sol#L41-L47

 struct AuctionInfo {

 uint filForAuction;

 uint pFILBoughtBack;

 uint startAtTime;

 uint expiresAtTime;

 uint id;

 }

Solution

It is recommended to modify the name of the pFILBoughtBack parameter

Status

Fixed

[N4] [Suggestion] Return value unchecked

Category: Others

Content

In the wrap() function and unwrap() function of the wPFIL contract, the transfer() function and

transferFrom() function are used to transfer ERC20 tokens, and the return value is not checked.

 function wrap(uint256 _pFILAmount) external returns (uint256) {

 require(_pFILAmount > 0, "wpFIL: can't wrap zero pFIL");

 uint256 wpFILAmount = pFIL.getSharesByFIL(_pFILAmount);

contracts/wPFIL.sol#L47-53

 _mint(msg.sender, wpFILAmount);

 pFIL.transferFrom(msg.sender, address(this), _pFILAmount);

 return wpFILAmount;

 }

 function unwrap(uint256 _wpFILAmount) external returns (uint256) {

 require(_wpFILAmount > 0, "wpFIL: zero amount unwrap not allowed");

 uint256 pFILAmount = pFIL.getFILByShares(_wpFILAmount);

 _burn(msg.sender, _wpFILAmount);

 pFIL.transfer(msg.sender, pFILAmount);

 return pFILAmount;

 }

Solution

It is recommended to check the return value of transfer() and transferFrom() or use safetransfer() and

safetransferFrom().

Status

Fixed

[N5] [Suggestion] Avoid using transfer()

Category: Others

Content

In the AgentImplContract contract,, it is not recommended to use transfer() because the gas cost changes

introduced by EIP 1884 may cause the contract to no longer be secure.

 receiveWithdraw

 auctionBidded

 reclaimOwnerAddress

contracts/wPFIL.sol#L63-L69

contracts/Repl.sol#L235-L250,L288-L306

contracts/AgentImplementation.sol

Solution

It is recommended to use call() function instead of transfer() function.

Status

Fixed

[N6] [Suggestion] Missing event record

Category: Others

Content

Missing events for state changes in the contract.

updateAgentImpl

setAddress

setFee

setAuction

controlProtocol

setProtocol

setDuration

setStartPrice

addMinter

mint

burnFrom

Solution

Recording events.

Status

Fixed

[N7] [Suggestion] Redundant code

contracts/Repl.sol

contracts/ReplAuction.sol

contracts/PFIL.sol

Category: Others

Content

The defined variables and events are not used.

 uint256[49] private __gap;

 event MinterAdded(address indexed account);

 event MinterRemoved(address indexed account);

Solution

Can remove useless code and add event logging in the corresponding function.

Status

Fixed; The project party stated that the __gap parameter will be reserved for contract upgrades.

5 Audit Result

Audit Number Audit Team Audit Date Audit Result

0X002311210001 SlowMist Security Team 2023.11.16 - 2023.11.21 Medium Risk

Summary conclusion: The SlowMist security team use a manual and SlowMist team's analysis tool to audit the

project, during the audit work we found 1 medium risk, 1 low risk, 5 suggestion vulnerabilities.

contracts/AgentImplementation.sol

contracts/Repl.sol

contracts/ReplAuction.sol

contracts/PFIL.sol

6 Statement

SlowMist issues this report with reference to the facts that have occurred or existed before the issuance of this

report, and only assumes corresponding responsibility based on these.

For the facts that occurred or existed after the issuance, SlowMist is not able to judge the security status of this

project, and is not responsible for them. The security audit analysis and other contents of this report are based on the

documents and materials provided to SlowMist by the information provider till the date of the insurance report

(referred to as "provided information"). SlowMist assumes: The information provided is not missing, tampered with,

deleted or concealed. If the information provided is missing, tampered with, deleted, concealed, or inconsistent with

the actual situation, the SlowMist shall not be liable for any loss or adverse effect resulting therefrom. SlowMist only

conducts the agreed security audit on the security situation of the project and issues this report. SlowMist is not

responsible for the background and other conditions of the project.

