
SMART CONTRACTS REVIEW

December 8th 2023 | v.	1.0

score

100

PASS
Zokyo Security has concluded that

these smart contracts passed a

security audit.

Security Audit Score

Zokyo Audit Scoring Repl

1

Repl Smart Contracts Review

1. Severity of Issues:

 - Critical: Direct, immediate risks to funds or the integrity of the contract. Typically, these
would have a very high weight.

 - High: Important issues that can compromise the contract in certain scenarios.

 - Medium: Issues that might not pose immediate threats but represent significant
deviations from best practices.

 - Low: Smaller issues that might not pose security risks but are still noteworthy.

 - Informational: Generally, observations or suggestions that don't point to vulnerabilities
but can be improvements or best practices.

2. Test Coverage: The percentage of the codebase that's covered by tests. High test
coverage often suggests thorough testing practices and can increase the score.

3. Code Quality: This is more subjective, but contracts that follow best practices, are well-
commented, and show good organization might receive higher scores.

4. Documentation: Comprehensive and clear documentation might improve the score, as it
shows thoroughness.

5. Consistency: Consistency in coding patterns, naming, etc., can also factor into the score.

6. Response to Identified Issues: Some audits might consider how quickly and effectively
the team responds to identified issues.

Hypothetical Scoring Calculation:

2

Repl Smart Contracts Review

Let's assume each issue has a weight:

- Critical: -30 points

- High: -20 points

- Medium: -10 points

- Low: -5 points

- Informational: -1 point

Starting with a perfect score of 100:

- 0 Critical issue: 0 points deducted

- 1 High issue: 1 resolved and = 0 points deducted

- 2 Medium issues: 2 resolved = 0 points deducted

- 2 Low issues: = 2 resolved = 0 points deducted

- 6 Informational issues: 6 resolved = 0 points deducted

Thus, score is 100

3

Repl Smart Contracts Review

This document outlines the overall security of the Repl smart contracts evaluated by the
Zokyo Security team.

Technical​ ​Summary

The scope of this audit was to analyze and document the Repl smart contracts codebase for
quality, security, and correctness.

There were 0 critical issues found during the review. (See Complete Analysis)

Contract Status

low Risk

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contracts but rather limited to an assessment of the logic and implementation. In order
to ensure a secure contract that can withstand the Ethereum network’s fast-paced and
rapidly changing environment, we recommend that the Repl team put in place a bug bounty
program to encourage further active analysis of the smart contracts.

https://docs.google.com/document/d/1m2vatjc_MOYvEKxLzVnjVGnjJl3a-oJwYa7b19PeIao/edit#heading=h.y413rcm4r1gs

4

Repl Smart Contracts Review

9Complete​ ​Analysis

7Executive Summary

8Structure​ ​and​ ​Organization​ ​of​ ​the Document

5Auditing Strategy and Techniques Applied

Table of Contents

Auditing Strategy and Techniques Applied

5

Repl Smart Contracts Review

Within the scope of this audit, the team of auditors reviewed the following contract(s):

./wPFIL.sol

./AgentProxy.sol

./ReplAuction.sol

./PFIL.sol

./AgentImplementation.sol

./Repl.sol

The source code of the smart contract was taken from the Repl repository:  
Repo: https://github.com/Project-pFIL/pFIL-contracts

Last commit - aee2b6fa869a1ed256772954ccab054154bf58ec

During the audit, Zokyo Security ensured that the contract:

Implements and adheres to the existing standards appropriately and effectively;

The documentation and code comments match the logic and behavior;

Distributes tokens in a manner that matches calculations;

Follows best practices, efficiently using resources without unnecessary waste;

Uses methods safe from reentrance attacks;

Is not affected by the most resent vulnerabilities;

Meets best practices in code readability, etc.

https://github.com/Project-pFIL/pFIL-contracts

01 Due diligence in assessing the overall
code quality of the codebase.

02 Cross-comparison with other, similar
smart contracts by industry leaders.

03 Thorough manual review of the
codebase line by line.

6

Repl Smart Contracts Review

Zokyo Security has followed best practices and industry-standard techniques to verify the
implementation of Repl smart contracts. To do so, the code was reviewed line by line by our
smart contract developers, who documented even minor issues as they were discovered. In
summary, our strategies consist largely of manual collaboration between multiple team
members at each stage of the review:

7

Repl Smart Contracts Review

Executive Summary

The Zokyo team detected vulnerabilities of varying severity levels, including high, medium,
and low, as well as a few informational issues. It's important to note that the Repl team
promptly reacted to all identified issues. For a more comprehensive breakdown of these
findings, please refer to the "Complete Analysis" section.

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the
contract’s ability to operate.

Informational​

The issue affects the ability of the
contract to compile or operate in a
significant way.

High

The issue affects the ability of the
contract to operate in a way that
doesn’t significantly hinder its
behavior.

Medium

The issue affects the contract in such
a way that funds may be lost,
allocated incorrectly, or otherwise
result in a significant loss.

Critical

For the ease of navigation, the following sections are arranged from the most to the least
critical ones. Issues are tagged as “Resolved” or “Unresolved” or “Acknowledged” depending
on whether they have been fixed or addressed. Acknowledged means that the issue was
sent to the Repl team and the Repl team is aware of it, but they have chosen to not solve it.
The issues that are tagged as “Verified” contain unclear or suspicious functionality that
either needs explanation from the Client or remains disregarded by the Client. Furthermore,
the severity of each issue is written as assessed by the risk of exploitation or other
unexpected or otherwise unsafe behavior:

Structure​ ​and​ ​Organization​ ​of​ ​the Document

8

Repl Smart Contracts Review

Complete​ ​Analysis

Findings summary

9

Repl Smart Contracts Review

Resolved

Resolved

Resolved

Unresolved

Resolved

Resolved

Medium

Informational

Informational

Informational

Informational

Low

RiskTitle# Status

Resolved

Resolved

Medium

Resolved

Resolved

Resolved

Resolved

3

High

Low

Informational

Informational

Informational

1

The subtraction in the receiveWithdraw function may
cause excessive reverts due to arithmetic underflow

5

7

11

9

2

6

10

8

12

4

An attacker can cause legitimate transactions to
revert and purchase auctioned tokens at the lowest
possible price

Unnecessary usage of library

Misleading mapping name

No Need To Check amount < 0

Misleading documentation comments

The pFILAmount Should Be Used Instead Of
_amount

Use of floating pragma

CEI Violation

Unneeded costly Safe Math computation

Length Of The Array Should Be Cached Outside
The For Loop

Lack of protection against initialization of
implementation contracts

10

Repl Smart Contracts Review

High-1 Resolved

An attacker can cause legitimate transactions to revert and purchase auctioned tokens at
the lowest possible price

The buy function in ReplAuction contract allows users to purchase FIL with pFIL tokens. The
function calculates the FIL token price dynamically, with the price decreasing over time to
benefit auction participants. An attacker can take advantage of this by monitoring the
mempool for pending transactions that attempt to purchase a large number of FIL tokens.
Before the legitimate transaction is confirmed, the attacker can execute a front-running
attack causing this transaction to revert.

Let’s assume the following scenario:

When a legitimate user attempts to purchase the maximum amount of FIL available in an
auction, an attacker can observe this transaction and front-run it by submitting their own
transaction to buy a trivial amount of FIL (as little as 1 wei).

Once the attacker's transaction is executed, the maxAmount of FIL available for auction
decreases. As a result, when the legitimate user's transaction is processed, it fails the check:

Recommendation:

Implement a minimum transaction threshold to prevent trivial purchase from impacting the
greater orders.

because the maxAmount has been reduced by the attacker's purchase. This leads to the
legitimate transaction being reverted, causing the user to lose out on the opportunity to buy
FIL at the intended price and wasting their transaction fees. By doing so, the attacker can
continuously front-run legitimate transactions and purchase FIL tokens at the lowest
possible price.

11

Repl Smart Contracts Review

Medium-1 Resolved

The pFILAmount Should Be Used Instead Of _amount

Users can buy FIL with pFIL via the buy() function in the ReplAuction.sol contract. At L159 it
makes a check require(pFILToken.balanceOf(msg.sender) >= _amount, "pFIL balance <
price"); . This check is trying to make sure that the user has enough pFIL balance (making
sure it is more than or equal to the amount being sent) , but it compares pFIL balance of the
user with FIL amount instead of pFIL amount , the correct check would be

require(pFILToken.balanceOf(msg.sender) >= pfilAmount, "pFIL balance < price"); since we
want to make sure the user has enough pFIL not FIL.

This might make valid transactions revert .

Recommendation:

Change the statement as stated.

12

Repl Smart Contracts Review

 Low-1 Resolved

Lack of protection against initialization of implementation contracts

The audited contracts use the Initializable module. To prevent leaving an implementation
contract uninitialized, OpenZeppelin's documentation recommends adding the
_disableInitializers function in the constructor, which automatically locks the contracts when
they are deployed.

Recommendation:

Consider adding an empty constructor that calls _disableInitializers().

https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#initializing_the_implementation_contract

13

Repl Smart Contracts Review

Informational-1 Resolved

Use of floating pragma

The audited contracts use the following floating pragma:

It allows for the compilation of contracts with various compiler versions and introduces the
risk of deploying with a different version than the one used during testing.

Recommendation:

Use a specific version of the Solidity compiler.

Informational-2 Resolved

Misleading mapping name

Repl.sol - The mapping ownerToAgentMap is referring to owners given an agent address.
The mapping name can cause confusion as it implies that it refers to agent address given
address of owner.

ownerToAgentMap[address(agent)] = msg.sender;

Recommendation:

Rename mapping and refactor the code accordingly.

14

Repl Smart Contracts Review

Informational-3 Acknowledged

Unneeded costly Safe Math computation

PFIL.sol - In function decreaseAllowance() the operation
currentAllowance.sub(_subtractedValue) can be executed without the overhead of
SafeMath. This is because it is already required and asserted that currentAllowance is
greater in value than or equal to _subtractedValue.

 function decreaseAllowance(

 address _spender,

 uint256 _subtractedValue

) public override returns (bool) {

 uint256 currentAllowance = allowances[msg.sender][_spender];

 require(currentAllowance >= _subtractedValue,
"ALLOWANCE_BELOW_ZERO");

 _approve(msg.sender, _spender,
currentAllowance.sub(_subtractedValue));

 return true;

 }

Similarly in _burnShares for operation _getTotalShares().sub(_sharesAmount).
Since _sharesAmount <= accountShares and accountShares is less than or at most
equal to the total shares of the token.

 function _burnShares(address _account, uint256 _sharesAmount) internal
returns (uint256) {

 require(_account != address(0), "BURN_FROM_ZERO_ADDR");

 uint256 accountShares = shares[_account];

 require(_sharesAmount <= accountShares, "BALANCE_EXCEEDED");

 uint256 preRebaseTokenAmount = getFILByShares(_sharesAmount);

 totalShares = _getTotalShares().sub(_sharesAmount);

 shares[_account] = accountShares.sub(_sharesAmount);

 uint256 postRebaseTokenAmount = getFILByShares(_sharesAmount);

15

Repl Smart Contracts Review

 emit SharesBurnt(_account, preRebaseTokenAmount,
postRebaseTokenAmount, _sharesAmount);

 return totalShares;

 }

Recommendation:

Operations can be marked unchecked to save the overhead of library SafeMath and the
built-in solidity safe maths.

Fix: Client no longer uses the SafeMath Library. Still no response regarding this specific
issue because the unnecessary safe math computation by default is being carried out in
some cases where it is not needed.

Informational-4 Resolved

Misleading documentation comments

AgentImplementation.sol - Comment for function _getOwnerReturn refers mistakenly to
beneficiary address.

 /**

 * @dev get beneficiary address of current miner

 */

 function _getOwnerReturn()

 internal

 view

 virtual

 returns (MinerTypes.GetOwnerReturn memory ownerReturn)

 {

 CommonTypes.FilActorId _actorId =
CommonTypes.FilActorId.wrap(actorID);

 ownerReturn = MinerAPI.getOwner(_actorId);

 }

Recommendation:

A minor correction to the comment required.

16

Repl Smart Contracts Review

Informational-5 Resolved

CEI Violation

Checks Effects Interaction pattern is being violated in the auctionBidded() function in
Repl.sol , there is an external call to the user at L320 which is done before the state changes
at L326,327,328.

Recommendation:

The external call should be in the end after all the state changes.

Informational-6 Resolved

No Need To Check amount < 0

The check at L151 in AgentImplementation.sol can be reduced to if (amount >=
ownerActor.balance) revert InvalidSafePledge(); since amount is of type uint256 which
can not be negative.

Recommendation:

Remove the extra check

Informational-7 Resolved

Length Of The Array Should Be Cached Outside The For Loop

The for loop at L167 in AgentImplementation.sol computes the length of the
controlAddresses array with each iteration , this costs 100 extra gas each time. Instead the
length of the array can be cached outside the for loop to save on gas.

Recommendation:

Cache the length of the controlAddresses array outside the for loop.

PassAccess Management Hierarchy

Arithmetic Over/Under Flows Pass

./wPFIL.sol

./AgentProxy.sol

./ReplAuction.sol

./PFIL.sol

./AgentImplementation.sol

./Repl.sol

PassDelegatecall

PassHidden Malicious Code

PassUnchecked CALL
Return Values

PassExternal Contract Referencing

PassGeneral Denial Of Service (DOS)

PassFloating Points and Precision

PassSignatures Replay

Pass
Pool Asset Security (backdoors in the
underlying ERC-20)

PassRe-entrancy

PassUnexpected Ether

PassDefault Public Visibility

PassEntropy Illusion (Lack of Randomness)

PassShort Address/ Parameter Attack

PassRace Conditions / Front Running

PassUninitialized Storage Pointers

PassTx.Origin Authentication

17

Repl Smart Contracts Review

We are grateful for the opportunity to work with the team.

The statements made in this document should not be interpreted
as an investment or legal advice, nor should its authors be held
accountable for the decisions made based on them.

Zokyo Security recommends the team put in place a bug bounty
program to encourage further analysis of the smart contract by third
parties.

Repl

Repl

